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is required. In this case the pair ul,o = 0, v 1,o = Us is optimal only in some region 

which can be constructed by continuing the trajectories ru, into the past (coinciding in 

this case with trajectories ws) up to intersection with the surface rr (w) = 0. 

Figure 1 shows a typical trajectory ws . At the start the position is moved along an 

ellipse with center at point a and the control 9 has a constant direction up to the swit- 

ching point p After the switching at point P motion takes place along an ellipse with 

center at point b. The lengths of the segments (a, 0), (0, b) equal unity, At the point 

p1 (P - n/2 - Y = 0), lying on set M 3, the first player turns off the velocity by im- 

pulse and the position is moved to “hard” contact during a time x / 2 . 
We fix a certain small number er > 0 and among the trajectories wa we isolate a 

family WZ,~,~ by the following test. Along any trajectory ~a,~,~ of the family indi- 

cated, from the estimate pi (w & < 0 follows the estimate r1 (w~,~,I) < -&I, 
while from the estimate r1 (w?,& > -er follows the equality pi (wZ,+i) = 0. Sup- 
pose that the trajectories ~~,~,r occupy a region WE,i. We state the final result. 

Theorem 6. 2. The controls uiO = us = (J and v,’ = vZ realize,in the re- 

gion lY,,in W,’ (max) the time T, = tc + rc / 2 and the second player cannot in- 

crease this time. This time cannot be lessened by the first player by any pair u, v., 
preserving the inclusion w E Wr,i n W,’ (max). If the inclusion indicated is not vio- 

lated until MP is hit, then the motion passes into region C, through the boundary 
T, = x / 2 (tc = 0). 
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We examine differential games of encounter in which the minimizing player 

observes the game’s position on a subset Q of the motion interval [to, Tl. The 
subset Q is formed by the second player during the motion, i.e. he switches on 
a noise eliminating observation. We pose the problem of optimal noise distribu- 

tion and solve four examples. A general setting of similar problems was given 
in [l]. Related problems were examined, for example, in [2, 31. 
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1. Statement of the problem, Let a differential game of players X and )- 
be specified on a fixed time interval [t’, T1 by the differential equations, constraints, 
and initial conditions 

x : k = f (2, t, ZL), u (t) E u, 5 (t”) = 2-- (1.1) 
Y : g = g (y, t, v), u (t) E I’, y (to) = y” 

The dimensions of the phase vectors x, y and of the control vectors ZL, u are arbitrary ; 
U, V are sets in the space of vectors I(, L’; f, 6 are specified functions. 

The conditions for information available to player X are as follows. He knows rela- 

tions (1.1) and on the whole motion interval he observes the exact value of his own phase 
vector. Player X observes the opponent’s phase vector on a set Q C [to, T] , consist- 

ing of a fixed number N of closed intervals (the observation intervals) lai, h,), i = 

1 7 * . .7 N. The instants ai, hi are subject to the constraints 

to = (I~ \( 0, .< , . . < a.v < h = T (1.2) 

N-l 

6i=ai_l-bi, i=1,.,.,N-1; 2 fii,<+,<T-tt” 
i=l 

Consequently, the set P = [t’, T] \ Q consists of N - 1 open intervals (the noise 

intervals) (bi, a,+.l), i = 1, . . . , N - 1. We consider that player I’ forms a set 
P during the motion and communicates to player X the scalar signal p (t), t E [t”, 
j”] at each instant (the last instant of exact observation, see Cl]) 

q (t) = t, t fq [ai, b,l, i = 1, . . ., iv 

q (t) = bi, t E (bi, ~i+l), i = 1, . . ., N - 1 

(1.3) 

The sets P, subject to constraints (1. Z),are said to be admissible. It is obvious that 
admissible sets P and the time functions (signals) q (t), t E [to, T] , of form (1.3) 
are in one -to-one correspondence. Therefore, in the subsequent reasoning the set P is 

sometimes replaced by a signal q (t) specified on the whole interval [t”, T]. We note 

that the value of signal (1.3) at some fixed instant yields only local information on the 

structure of set 1’. 
Player x forms his own control at instant t by having available the collection of 

quantities z = {Z (t), Y (4 (t)), t, q (t)}, t E lt”, T], i.e. employs strategies in 
the form of the functions u = u (2). Player X ‘s purpose is to minimize the functional 

J = F (5 (T), Y (T)) (1.4) 

where P (5, y) is a specified function. Player Y realizes his own control u (t) and 
the signal q (t) as time functions subject to constraints (1.1) - (1.3) and counteracts 
the intentions of player X. On the quantities u (z), u (t), q (t) and relations (l.l)we 
impose constraints ensuring the existence and uniqueness of absolutely continuous solu- 
tions of system (1.1); if necessary, we also include the vector u (q (t)) into collection 
z . Considering the game from the positions of player X, we pose the following problem. 

Problem 1. Find the noise distribution P* worst for player X and his optimal 
minimax strategy u*, i.e. the strategy and the set P* satisfying the relation 

J* = min, maxp sup, J [u, v, PI = supD J [u*, u, P*l (1.5) 
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Find the minimal guaranteed value J* of functional (1.4). 
Here J [u, u, P] is a value of functional (1.4),corresponding to strategy U, control 

u and noise set P. The extrema in (1.5) are taken over the sets descri.bed above. By 

realizing the various sets P of noise instants, player Y cannot increase the maximum 

of functional (1.4) guaranteed for himself, but can, in general, increase the minimum of 

this functional, guaranteed for player X as compared with a noise-free game (P = #). 
Let us point out a case when Problem 1 is reduced to a problem with a fixed noise set. 

We present its formulation. Let set P (the signal 4 (r), t E [to, T]) be specified 
before the start of the game and be known to player X who employs strategies in the 

form of functions of 2’ = {z (t), y (q (t)), t}. 
Problem 2. Find the optimal minimax strategy u” of player X 

J” = min, supV J [u, VI = supV J [u”, v] (1.6) 

Find the quantity J” = J” [PI. 
Suppose that a solution of Problem 2 exists for all admissible sets P and has the form 

u” It1 = I.8 (z’, P) = u” (z’, q (t)), i.e. for constructing an optimal control at in- 
stant t by player X , it is sufficient that he has only local information on set P consisting 

of knowning the signal q (t). Then the noise distribution P* , worst for player X in 

Problem 1, can be found from the condition 

J* = maxp J” [PI = J” [P*I (1.7) 

and the strategy U* (z) = U” (z’, q (t)) is the solution of Problem 1. The maximum 
in (1.7) is taken over admissible sets $J. 

Let us prove the assertions made. Suppose that under the hypotheses of Problem 1 play- 

er X employs a strategy u = u” (z’, q (t)). The equality 

sup, J lu”, u, PI = J” [PI 

is valid for arbitrary P realized by player Y, whence it follows: 

J* < maxp sup0 J [u”, u, PI = maxp J” [PI (1.8) 

On the other hand, for each fixed P we have 

J* > J” [PI (1.9) 
since player Y has the possibility in Problem 1 of realizing precisely this set P, while 

the quantity J” [P] is the minimal guaranteed value of functional (1.4) for the speci- 

fied noise set P. Carrying out a maximization over P in (1.9) and allowing for (1.8) 

we obtain equality (1.7). 

2. Exompler. Let us consider in parallel four encounter games with noise, whose 
solutions can be described in common. Let the players X and Y be moved on the in- 
terval [(I, T] in accorcance with one of the pairs of equations of motion and constraints 

x: Y: 

2’ = 7.4, lul,<lL; y’ = v, l u I < v (2.1) 

2” = u, I z.! I < p; 
. . 

Y =u, Ivl\(y (2.2) 

2” = 24, lu I=Gj; y’ = v, I u I < 1 (2.3) 
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5’ == ax + u, 1 u 1 Q 1; y’ = hy + u, I u J < v (2.4) 

p>v>O, a=+l, --co< A<-/-@ 

Here Z, 9, U, u are vectors of arbitrary identical dimension; p, v, a, 3L are real 

parameters. The initial values of the phase vectors and velocities (for the equations with 

second time derivative) are specified by the equalities 

x (0) = X0, x’(0) = XlO, y (0) = y”, y’ (0) = yB (2.5) 

The conditions of information available to player X and the admissible noise sets P 
are described in Sect. 1. For the games (2.1) - (2.4) we pose Problem 1 with the func- 
tional 

J = Ix(T)-_y(T) I (2.E) 
Let us show that the examples (2.1) - (2.4) being examined refer to the case mentioned 

at the end of Sect. 1, i.e. can be solved by reduction to Problem 2 and by the use of 

relation (1.7). 

Solution of Problem 2. The quantity (1.6) can be constructed for (2.1)-(2.6), 
having solved the corresponding multistage-differential equations of Bellman for multi- 

stage-differential games, to which Problem 2 is reduced (see [l, 41). A technically sim- 

pler way, to which we give preference below, consists (with some loss of strictness) in 

reducing the examples being analyzed to a multistage game with a finite or denumer- 

able number of steps. 
In what follows we shall need sufficient sets of observation instants A r C 10, T] 

(see [4]). The observations of player X at the points of this discrete set ensure him the 
same guaranteed minimum of functional (2.6) as in a game with complete information. 

Sets Ar == { li > for games (2. l), (2.2) are constructed in [l] and consist, respectively, 

of the denumerable set of points 

ti L= I‘ 11 - (v / p)‘-1 1, fi _ T [ 1 _ (v /’ iL)(W2], i = 1,2, . . . (2.7) 

condensing to the instant i * = T. In game (2.3) the points of set AT are given by the 

recurrence relations ( [4]) 

T - ii - (T - ti,l)” I 2 _ ‘1, i = 0, + 1, t 2, . . ., (2.8) 

t,= 0, t, = 2 

11 z l,‘?, T > 1; h =T(i - T/2), @(T<1 

The condensation points of (2.8) are the instant I* = T - 1 for T > 1 and the ins- 
tant t* = 0 for 0 ( T < I. The set A r for game (2.4) is constructed in [5]; depen- 
ding on the values of the parameters the single condensation point t* of this set can be 

located at the origin, at the end, or inside the interval of motion. 
let us consider the discrete set of observation instant A D = (A T n q) u 1) \ 1’ (I-’ 

is the closure of set P), n O C Q. Set A o is obtained by supplementing the point of 
set nr by those boundary points of region I’ which fall into region @ and is finite 
(denumerable or finite) if t* $ Q (t* E 0). The points of set fl ,, are’denoted rh,, 
k -= 0, i_ 1) 2 2, . . ., numbering them by positive indices in order of succession 
from left to right, ri = 0, and by negative indices, from right to left, ‘to = T. Depen- 
ding upon the location of point t * the sets of positive and negative indices can be finite, 
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while points with negative indices may be absent altogether* By H: we denote the set of 
indices corresponding to the points of A 0, excepting the zero index corresponding to the 

instant ‘co = T, i.e. A o = {Q: h_ E K + 0). 

Using the substitutions 

5 (t) -+- (T - t) 2’ (t) -+x(t), X0 + TXrO -+XC 

Y (t) + (T - 0 Y’ (Q -+Y (0, Y0 + Ty,O +y* 

we write the equations of motion of players X in (2.2), (2.3) and Y in (2.2) with ini- 

tial phase vector values as 

&’ =(T- t) u, x(0) =x0, y’ =(T- t) Y, y(0) =yo (2.9) 

The form of functional (2.6) does not alter here since the values of the new phase 

vectors at t = T are identical with the values of the original ones. For the three equa- 
tions indicated, by z ( t), y (t) we shall understand the linear combination of phase vec- 
tor and velocity introduced above. 

Suppose that in games (2.1) - (2.4), (2.9) the player x’ observes the position (x&, 

&,), xk = z (Q), yk = y (z,), k E K + 0, only at points of set A o and specifies 
hi; own control on the intervals [TV, rk+,), k E K, in the form of the functions u = 

U (Ick, &; t) integrable in time and satisfying constraints (2.1) - (2.4), i.e. employs 
piecewise-program strategies. By an integration of Eqs. (2.1) - (2.4), (2.9) we can ob- 
tain 

xk+l = fkxk + pkukr 1 uk f s< 1 SAlO) 

Yk+l = skyk + qkuk* 1 pk / < 1, k t% K 

where the vectors uk, r$ are constructed according to the strategy and control speci- 
fied (see [43). The coefficients of Eqs. (2.10) for games (2.1) - (2.4) respectively,have 
the form 

Tk =+ =1, Pk = PA,, “Ik = VA., 

Pk =sk =I, Pk = pa,, qk = V”k 

rk =sk -1, pk =dk, qk =Ak 

%‘k fk=e , 
h3k 

Sk=f? , pk = (eaAk - 1) .! U 

qk = V (ehAk - ‘i) / h 

ak = Ak (T - Tk - A, / 2), Lik = Tk+l - zk, k E K 

In the notation adopted the initial values and the functional (2.6) for (2.10) are written 
as 

x1 = 9, y1 = y”; J = I xo - YO I (2.11) 

Relations (2. lo), (2.11) specify a multistage game. In this game the collection of func- 

tions zk = r&k (a& &), 1 ak [ < I, k E K is called an admissible strategy ua 
of player X . In (2. lo), (2.11) player Y realizes the control VA in the form of the 
sequence vk, 1 vk 1 < 1, k E K. We note that certain constraints, following from 
the continuity of the phase trajectories in the original games, have been imposed on the 

solution of (2.10) (trajectories. 
Let us clarify what we have said for the case when K contains a countable number 

of positive and negative indices, In this case a solution of (2.10) is the collection 
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{xk}, (yk}, 12 E K, satisfying (2.10) and the conditions xk, 5-k -+ x *; yk, y-h_ - y* as 
k --+ CO, where x*, Y * correspond to x (t*), I/ (t*) in the original equations. By the con- 

struction of (2.10) we see that if in the original differential games with observations on 

A, we adopt piecewise-constant strategy u (Q, ZJ~: t) G + (,Q, gL/k) and control 

~7 (t) f ok, t E [rk, t&, k E K, co~es~nding to some U,, V, from (2. lo), then the 
sequence x (tk), y (rk) realized is just the same as in (2.10) witb the pair or,, 1/,. 

Problem 2*. Find the minimax optimal strategy Ua* of player X in game(2.10) 

(2.11) i.e. the strategy satisfying the relation 

Jo = minu, maxVA J [UA, VAI = maxv, J [UA*, Vd 

Find the quantity of J,. 
We define the Bellman function 

(2.12) 

Sk (xk, yk) = I’ninUAmaxVA J, J+& K, so (x0, yo) I‘- 1 50 - y0 1 (2m 

Here, in the minimum (maximum) operations there participate those components ui (vi) 

of strategy U, (of control VA), for which the points ri lie to the right of $, i.e. 

1 / i < 1 / k, i E K; in addition, we assume that the position {zk, yk} is realized 
at instant ‘ck . From (2.12) (2.13) we have Jo = ,S’, (x0, 3”). The recurrence relation 

for the Bellman function also follows from (2.13) : 

(2.14) 

where %ti, Yktl are taken in the form (2.10). It is easy to verify that the unique solu- 
tion of relations (2.14) is 

s& czkl yk) = max [@k, RkfXkt yk)f (2.15) 

0, = max .R (Tit ri+l), Ii E K l/i,(l/k, iEK 

IIere the function R (g, ?‘l) for games (2.1) - (2.4), respectively, equals 

y(T-- E) - P CT - rlL 
T - E - (T - q)a / 2, 

Further, & (+c, &) = b’n (%a ?!k) i 
?t$ = R”k - gk7 while for game (2.4) 

Iv CT - 8” - p (T - Tpl / 2 (2.16) 
21 (&T-Z) _ 1) /a - (&w - 4) / a 

+ R tzk, xk), where for the first three games 

wk = eaiT-'k)q - eh(T-Tk)yk 

The components of strategy UA* of Problem 2*, imparting the minimum in (2.14), 
have the form 

uk = - wk 1 iWkit bkl > Pkzk+l (2.17) 

uk = - wk i bk2k+lh iWki < pklk+I, k e K 

The quantities tk = 5 in the first three games and E, = ea(T-skl in game (2.4) ; the 
& are taken from (2. IO). Thus, if in (2.1) - (2.4), (2.9) we substitute the piecewise- 
constant strategy (2.17). then the value 

Jo = S1 (8, y”) = max IQ,,, R, (x0, $)I (2.18) 
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of factional (2.6) is guaranteed. The i~~nvenience of strategy (2.17) is that knowledge 
of the instant %k+r at the instant r, is assumed in it. Therefore, let us describe another 
strategy equivalent to (2.1’7) and relaying only on the last observation instant q (t) (cf 

(1.3)) 
q (t) = Tkr t E-z hkr zk+d, k E K (1.19) 

Let w(t) = 2 (t) - Y (Q (t)) for (2.1) - (2.3) (2.9) and 

W (t) = eL+(T-‘fX (t) - ea(T*@ff y (q (t)) 

for (2.4). Then it is easy to verify that the piecewise-program strategy 

u= - w (t) / 120 (t)l, w (t) # 0; ix = 0, w (t) = 0 (2.20) 

realizes in (2.1) - (2.4), (2.9) the same sequence zk, Yk, that (2.17) does, and Conse- 
quently, guarantees the quantity (2.18) for (2.6). Generally speaking, strategy (2.20) 

differs fr;m the strategies introduced in Sect. 1, but less information is required for con- 

structing (2.20) (continuous observations on the intervals [Q, b,] are replaced by dis- 

crete ones). Therefore, we assume that strategies of form (2.20) are admissible in Prob- 

lem 2. Furthermore, strategy (2.20) satisfies the last assumption in Sect. 1. 
It can now be shown (for the application of (1.7)) that J, =L: J”, i.e. observations 

on A ,, C Q in the examples analyzed guarantee the same value of functional (2.6) 

as do the observations on Q. To show this we note that any pair zk, z~+~ E AO is one 
of the four pairs 

(2.21) 

for some values of 2, j. Here ai, bi are taken from (1.2) tt E A,. It can be verified 

( (2.7), (2.8), [53) that the points of A, satisfy the condition 

R (ti+ t) < R*, R 0, ti+J < R** ti < t< tit1 

R (ti, ti+l) = R, = max R (t, t), t E 10, Tl 

(2.22) 

where fz has form (2.14). From (2.21) (2.22),(2,15) we have 

S1 (z”, y”) = max IR,, max: R (bi, bt + ai), RI (5’9 @)I 
lSi<iV-1 

(2.23) 

From (2.22), (2.15) we see that supplementing do with an arbitrary finite number of 

discrete observation instants from Q does not improve the guaranteed result (2.23). This 

argument enables us to write Jo = J”. 
Construction of the optimal noise set. To seek the optimalset P* we 

accept that in (1.7) the quantity Jo is of form (2.23). When computing the maximum 

over admissible sets p (over parameters b,, ai of form (1.2) only the second alterna- 
tive in (2.23) is affected, i.e. p* should be sought from the condition 

max max R (b,, b, + Si) 
@i’ BiF l<,<iav-1 

(2.24) 

Further, we note, that as follows from (1. Z), for any admissible set P the pair of num- 
bers E = bi, q = bi + fii, i = 1,. . . , N - 1 belongs to the set 

G = {(E, rl): E > 0; rl < T; 0 \( ,r~ - g < 6) (2.25) 

The first two constraints in (2.25) signify that the starting and ending instants of the noise 
interval lie on the interval 10, T]; the third constraint signifies that duration of each 
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particular noise is nonnegative and does not exceed the total duration 0. Consequently, 
the maximum in (2.24) does not exceed the quantity 

R* = max R (6, q), (E, 7) cz G (2.26) 

The constant R, is found by maximizing function R for g -- 7 = 0, 0 < 5 < T, 
i, e. on a subset of set G ; therefore, R, < li”. We see that if we take all the 6i equal 

to zero except for some one value (say, a,), then each point of region C; in (2.25) cor- 

responds to some admissible realization of noise set I ). This assumption indicates that 

player Y realizes only one noise in- 
terval (b,, a,). Suppose that themax- 

imum (2.26) is reached at the point 

Fig. 1 
J* -= max [R*, R,] (2.27) 

Thus, the problem of determining the optimal noise set P*,and the minimal guaran- 

teed value J* of the functional is reduced, in the examples being analyzed, to the deter- 

mination of the maximum point of functions (2.16) over region (2.25) and to the com- 

putation of the maximal value of these functions. We note that in all four examples the 
desired maximum is achieved on the segment 11 - 6 -= 6, 0 < c < T - 0, being 
a boundary segment for region G, i.e. v* - g* = ui* - bi* = 1‘. This circumstance 

is sufficiently obvious and signifies that it is advantageous for player Y to expend the 

whole noise resources. 
We describe the optimal noise sets, omitting the computations. For game (2.1) it has 

the form 
P* z (T - 19, T), b,* = T - 6, a~* = T (2.28) 

i.e. it is advantageous to player Y to switch on the noise on the last segment of motion. 

In games (2.2), (2.3) the optimal noise interval is located (depending on the quantity 6) 

on the middle or the initial segment of the motion interval. The endpoints of the inter- 

val are determined by the relations (2.29) 

b,” = T - 6 i (1 - Y / p), az* = b,* + 6, 0 < 6 < (1 - Y / p) T 

b,* z 0, I!;* rz 6, (1-vY/)T.<6\(T 

for game (2.2) and by the relations 

hi* =T- 6-1, a,*=T-1, O<i+<T-1 (2.30) 
b,* = 0, a2* -- 6 - 7 T-l<i?<T 

for game (2.3). 
Depending on the problem parameters, all three cases of location of the noise interval 

can be realized in game (2.4). The Figure shows the plane of parameters A, v for a= 1 
(Fig.1 a) and for a= - 1 (Fig. 1 b). The curves Li, i = 1,2,3 

L,: v = eVa”, h < a, L, : y = eaCT-a)-hT, j, ( ~1 

L, : v := ;1 (&T-a) - 1) / u (,).‘r _ ej\Q), A > u 
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partition this plane into three open regions Di, i = 1,2,3. The dotted lines show the 
curves Li for 6 = 0 (see the figure in [5]). In region L) t the optimal noise interval 

is located at the right end of the interval 10, T 1: hr* = T - 6, a~* = T; in region 
0s at the left end: b,* = 0, &* = 6. In region D, the set P” is located strictly in- 

side the interval [O. T] and has as its endpoints 

(2.31) 

If the pair (h? v) E L,, the set P * is determined ambiguously and is located at the 

right or the left end of the motion interval. Finally, at point R, 1” = U, Y = ema8, and 

set p* can be located arbitrarily, i.e. 0 ,< b,* < T - 6, up* = b,* + I?. The 
quantity R* in (2.27) is found by substituting the points (2.28)-(2.31) into function 

(2.16). As an example we present the value of R* in games (2. I), (2.3) 

R* =v0, 
(a+‘/,, o<s<T-- 

R*z\~--j,(~-6)2, T--1<6<T 

Note 1. Let us denote by P* [6] the optimal noise set conresponding to resource 6. 
It can be verified that sets (2.28), (2.29) are such that P* [s] CP* [W] for 6 -< 6’. On 

the other hand, in (2.29) we can find d < 6’ (6 is sufficiently small) such that P* [SJ i‘i 
I-‘* [fl’l = (is. Thus. as the resource 6 increases the optimal noise interval P* does not 

simply extend but also shifts along the interval 10, T]. 

Note 2. A comparison of (2.28)-(2.31) with results in [ 1, 4, 51 shows that it is not 

always advantageous to player Y to switch the noise on in a neighborhood of the conden- 
sation point of the sufficient observation instants set A,. This signifies that observations 

in a neighborhood of the condensation point are important for an exact achievement of 
the minimal magnitude of the functional ; the magnitude itself of the functional is in- 

fluenced, generally speaking, by observations at other points which are excluded due to 
the optimal noise set. 

Note 3. It was shown in [4, 51 that to ensure the guaranteed maximum of functional 

(1.4) it is necessary for player Y to have the observation at an interior point of the in- 
terval 10, T]. Consequently, some noise interval, containing this point, can decrease the 
guaranteed maximum of the functional, i. e. a meaningful maximin reformulation of 
the statement in Sect. 1 is possible. 
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